Loading…

Aberrant O-glycosylation inhibits stable expression of dysadherin, a carcinoma-associated antigen, and facilitates cell–cell adhesion

Recently, we identified dysadherin, a novel carcinoma-associated glycoprotein, and showed that overexpression of dysadherin in human hepatocarcinoma PLC/PRF/5 cells could suppress E-cadherin-mediated cell–cell adhesion and promote tumor metastasis. The present study shows evidence that dysadherin is...

Full description

Saved in:
Bibliographic Details
Published in:Glycobiology (Oxford) 2003-07, Vol.13 (7), p.521-527
Main Authors: Tsuiji, Hitomi, Takasaki, Seiichi, Sakamoto, Michiie, Irimura, Tatsuro, Hirohashi, Setsuo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, we identified dysadherin, a novel carcinoma-associated glycoprotein, and showed that overexpression of dysadherin in human hepatocarcinoma PLC/PRF/5 cells could suppress E-cadherin-mediated cell–cell adhesion and promote tumor metastasis. The present study shows evidence that dysadherin is actually O-glycosylated. This was based on a direct carbohydrate composition analysis of a chimera protein of an extracellular domain of dysadherin fused to an Fc fragment of immunoglobulin. To assess the importance of O-glycosylation in dysadherin function, dysadherin-transfected hepatocarcinoma cells were cultured in a medium containing benzyl-α-GalNAc, a modulator of O-glycosylation. This treatment facilitated homotypic cell adhesion among dysadherin transfectants accompanied with morphological changes, indicating that the anti-adhesive effect of dysadherin was weakened. Modification of O-glycan synthesis also resulted in down-regulation of dysadherin expression and up-regulation of E-cadherin expression in dysadherin transfectants but did not affect E-cadherin expression in mock transfectants. Structural analysis of O-glycans released from the dysadherin chimera proteins indicated that a series of O-glycans with core 1 and 2 structures are attached to dysadherin, and their sialylation is remarkably inhibited by benzyl-α-GalNAc treatment. However, sialidase treatment of the cells did not affect calcium-dependent cell aggregation, which excluded the possibility that sialic acid itself is directly involved in cell–cell adhesion. We suggest that aberrant O-glycosylation in carcinoma cells inhibits stable expression of dysadherin and leads to the up-regulation of E-cadherin expression by an unknown mechanism, resulting in increased cell–cell adhesion. The carbohydrate-directed approach to the regulation of dysadherin expression might be a new strategy for cancer therapy.
ISSN:0959-6658
1460-2423
DOI:10.1093/glycob/cwg065