Loading…
Strategy for Molecular Beacon Binding Readout: Separating Molecular Recognition Element and Signal Reporter
A new strategy for molecular beacon binding readout is proposed by using separation of the molecular recognition element and signal reporter. The signal transduction of the target binding event is based on displacing interaction between the target DNA and a competitor, the signal transducer. The tar...
Saved in:
Published in: | Analytical chemistry (Washington) 2009-12, Vol.81 (23), p.9703-9709 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new strategy for molecular beacon binding readout is proposed by using separation of the molecular recognition element and signal reporter. The signal transduction of the target binding event is based on displacing interaction between the target DNA and a competitor, the signal transducer. The target-free capture DNA is first interacted with the competitor, forming an assembled complex. In the presence of a target DNA that the affinity is stronger than that of the competitor, hybridization between capture DNA and the target disassembles the assembled complex and releases the free competitor to change the readout of the signal reporter. To demonstrate the feasibility of the design, a thymine-rich oligonucleotide was examined as a model system. Hg2+ was selected as the competitor, and mercaptoacetic acid-coated CdTe/ZnS quantum dots served as the fluorescent reporter. Selective binding of Hg2+ between the two thymine bases of the capture DNA forms a hairpin-structure. Hybridization between the capture DNA and target DNA destroys the hairpin-structure, releasing Hg2+ ions to quench the quantum dots fluorescence. Under the optimal conditions, fluorescence intensity of the quantum dots against the concentration of perfect cDNA was linear over the concentration range of 0.1−1.6 μM, with a limit of detection of 25 nM. This new assay method is simple in design, avoiding any oligonucleotide labeling. Furthermore, this strategy is generalizable since any target binding can in principle release the signal transducer and be detected with separated signal reporter. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac901906w |