Loading…

Neural Differentiation of Human Embryonic Stem Cells at the Ultrastructural Level

Neurodegerative disorders affect millions of people worldwide. Neural cells derived from human embryonic stem cells (hESC) have the potential for cell therapies and/or compound screening for treating affected individuals. While both protein and gene expression indicative of a neural phenotype has be...

Full description

Saved in:
Bibliographic Details
Published in:Microscopy and microanalysis 2010-02, Vol.16 (1), p.80-90
Main Authors: Mumaw, Jennifer L., Machacek, Dave, Shields, John P., Dodla, Mahesh C., Dhara, Sujoy K., Stice, Steve L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neurodegerative disorders affect millions of people worldwide. Neural cells derived from human embryonic stem cells (hESC) have the potential for cell therapies and/or compound screening for treating affected individuals. While both protein and gene expression indicative of a neural phenotype has been exhibited in these differentiated cells, ultrastuctural studies thus far have been lacking. The objective of this study was to correlate hESC to neural differentiation culture conditions with ultrastructural changes observed in the treated cells. We demonstrate here that in basic culture conditions without growth factors or serum we obtain neural morphology. The addition of brain-derived neurotrophic factor (BDNF) and serum to cultures resulted in more robust neural differentiation. In addition to providing cues such as cell survival or lineage specification, additional factors also altered the intracellular structures and cell morphologies. Even though the addition of BDNF and serum did not increase synaptic formation, altered cellular structures such as abundant polyribosomes and more developed endoplasmic reticulum indicate a potential increase in protein production.
ISSN:1431-9276
1435-8115
DOI:10.1017/S1431927609991279