Loading…

Support-assisted optical superresolution of low-resolution image sequences: the one-dimensional problem

We analyze the problem of optical superresolution (OSR) of a one-dimensional (1D) incoherent spatial signal from undersampled data when the support of the signal is known in advance. The present paper corrects and extends our previous work on the calculation of Fisher information (FI) and the associ...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2009-12, Vol.17 (25), p.23213-23233
Main Authors: Prasad, Sudhakar, Luo, Xuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We analyze the problem of optical superresolution (OSR) of a one-dimensional (1D) incoherent spatial signal from undersampled data when the support of the signal is known in advance. The present paper corrects and extends our previous work on the calculation of Fisher information (FI) and the associated Cramer-Rao lower bound (CRB) on the minimum error for estimating the signal intensity distribution and its Fourier components at spatial frequencies lying beyond the optical band edge. The faint-signal and bright-signal limits emerge from a unified noise analysis in which we include both additive noise of detection and shot noise of photon counting via an approximate Gaussian statistical distribution. For a large space-bandwidth product, we derive analytical approximations to the exact expressions for FI and CRB in the faint-signal limit and use them to argue why achieving any significant amount o unbiased bandwidth extension in the presence of noise is a uniquely challenging proposition. Unlike previous theoretical work on the subject of support-assisted bandwidth extension, our approach is not restricted to specific forms of the system transfer functions, and provides a unified analysis of both digital and optical superresolution of undersampled data.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.17.023213