Loading…

Reducing fumigant emissions after soil application

ABSTRACT Volatilization and soil transformation are major pathways by which pesticides dissipate from treated agricultural soil. Volatilization is a primary source of unwanted agricultural chemicals in the atmosphere and can significantly affect fumigant efficacy. Volatile pesticides may cause other...

Full description

Saved in:
Bibliographic Details
Published in:Phytopathology 2002-12, Vol.92 (12), p.1344-1348
Main Authors: Yates, S R, Gan, J, Papiernik, S K, Dungan, R, Wang, D
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Volatilization and soil transformation are major pathways by which pesticides dissipate from treated agricultural soil. Volatilization is a primary source of unwanted agricultural chemicals in the atmosphere and can significantly affect fumigant efficacy. Volatile pesticides may cause other unique problems; for example, the soil fumigant methyl bromide has been shown to damage stratospheric ozone and will soon be phased out. There is also great concern about the health consequences of inhalation of fumigants by people living in proximity to treated fields. Because replacement fumigants will likely face increased scrutiny in years ahead, there is a great need to understand the mechanisms that control their emission into the atmosphere so these losses can be minimized without loss of efficacy. Recent research has shown that combinations of vapor barriers and soil amendments can be effective in reducing emissions. In this paper, some potential approaches for reducing fumigant emissions to the atmosphere are described.
ISSN:0031-949X
1943-7684
DOI:10.1094/PHYTO.2002.92.12.1344