Loading…
Chemical and morphological features of dental composite resin: Influence of light curing units and immersion media
Aims: The study evaluated the influence of light curing units and immersion media on superficial morphology and chemistry of the nanofilled composite resin Supreme XT (3M) through the EDX analysis and SEM evaluation. Light curing units with different power densities and mode of application used were...
Saved in:
Published in: | Microscopy research and technique 2010-03, Vol.73 (3), p.176-181 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aims:
The study evaluated the influence of light curing units and immersion media on superficial morphology and chemistry of the nanofilled composite resin Supreme XT (3M) through the EDX analysis and SEM evaluation. Light curing units with different power densities and mode of application used were XL 3000 (480 mW/cm2), Jet Lite 4000 Plus (1230mW/cm2), and Ultralume Led 5 (790 mW/cm2) and immersion media were artificial saliva, Coke®, tea and coffee, totaling 12 experimental groups. Specimens (10 mm × 2 mm) were immersed in each respective solution for 5 min, three times a day, during 60 days and stored in artificial saliva at 37°C ± 1°C between immersion periods. Topography and chemical analysis was qualitative.
Findings:
Groups immersed in artificial saliva, showed homogeneous degradation of matrix and deposition of calcium at the material surface. Regarding coffee, there was a reasonable chemical degradation with loss of load particles and deposition of ions. For tea, superficial degradation occurred in specific areas with deposition of calcium, carbon, potassium and phosphorus. For Coke®, excessive matrix degradation and loss of load particles with deposition of calcium, sodium, and potassium.
Conclusion:
Light curing units did not influence the superficial morphology of composite resin tested, but the immersion beverages did. Coke® affected material's surface more than did the other tested drinks. Microsc. Res. Tech., 2010. © 2009 Wiley‐Liss, Inc. |
---|---|
ISSN: | 1059-910X 1097-0029 |
DOI: | 10.1002/jemt.20769 |