Loading…
Proliferation of Pancreatic Endocrine Cells Using Disaggregation–Expansion–Reaggregation Technology in Isolated Rat Islets
Abstract Donor scarcity is a major obstacle for clinical islet transplantation. Hence, the effective use of the limited number of available islets is necessary for successful islet transplantation. We have developed a new technology that could produce pseudo-islets. Morphologic and functional evalua...
Saved in:
Published in: | Transplantation proceedings 2010-04, Vol.42 (3), p.907-910 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Donor scarcity is a major obstacle for clinical islet transplantation. Hence, the effective use of the limited number of available islets is necessary for successful islet transplantation. We have developed a new technology that could produce pseudo-islets. Morphologic and functional evaluation was performed to test the feasibility of using these cells for transplantation. A 3-step procedure known as disaggregation–expansion–reaggregation (DER) was employed for pseudo-islet preparation. Islets isolated from 200 to 250-g male Lewis rats by collagenase digestion were separated into single cells by trypsinization. These pancreatic endocrine cells (PECs) were expanded by serial passages in culture before being aggregated at a high cell-density in a suspended state. After DER, cells were morphologically analyzed over time, and gene expression evaluated by reverse transcriptase polymerase chain reaction (RT-PCR). Through expansion by passage for 2 weeks in continuous cultures, approximately 1 million PECs were recovered after aggregation. By phase-contrast microscopy, they presented with spherical shapes and similar sizes compared with naïve islets (50–800 μm). RT-PCR results indicated expression of insulin, glucagon, and pancreatic and duodenal homeobox gene 1, which were observed in primary isolated islets as well. The insulin secretion capacity of pseudo-islets was confirmed by enzyme-linked immunosorbent assay. In conclusion, PECs treated with DER showed potential to serve as a cell source for pseudo-islet generation after in vitro cellular expansion. These cells were both morphologically and genetically similar to naïve islets. Our new technique could be a potential method to overcome the scarcity of donor islets in the near future. |
---|---|
ISSN: | 0041-1345 1873-2623 |
DOI: | 10.1016/j.transproceed.2010.02.044 |