Loading…
Characterizing the Swimming Properties of Artificial Bacterial Flagella
Artificial bacterial flagella (ABFs) consist of helical tails resembling natural flagella fabricated by the self-scrolling of helical nanobelts and soft-magnetic heads composed of Cr/Ni/Au stacked thin films. ABFs are controlled wirelessly using a low-strength rotating magnetic field. Self-propelled...
Saved in:
Published in: | Nano letters 2009-10, Vol.9 (10), p.3663-3667 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Artificial bacterial flagella (ABFs) consist of helical tails resembling natural flagella fabricated by the self-scrolling of helical nanobelts and soft-magnetic heads composed of Cr/Ni/Au stacked thin films. ABFs are controlled wirelessly using a low-strength rotating magnetic field. Self-propelled devices such as these are of interest for in vitro and in vivo biomedical applications. Swimming tests of ABFs show a linear relationship between the frequency of the applied field and the translational velocity when the frequency is lower than the step-out frequency of the ABF. Moreover, the influences of head size on swimming velocity and the lateral drift of an ABF near a solid boundary are investigated. An experimental method to estimate the propulsion matrix of a helical swimmer under a light microscope is developed. Finally, swarm-like behavior of multiple ABFs controlled as a single entity is demonstrated. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/nl901869j |