Loading…

Comprehensive expression profiling by muscle tissue class and identification of the molecular niche of extraocular muscle

ABSTRACT Muscle tissue is an elegant model for biologic integration of structure with function and is frequently affected by a variety of inherited diseases. Traditional muscle classes‐‐skeletal, cardiac, and smooth‐‐share basic aspects of contractile and energetics mechanisms but also have distinct...

Full description

Saved in:
Bibliographic Details
Published in:The FASEB journal 2003-07, Vol.17 (10), p.1370-1372
Main Authors: Khanna, Sangeeta, Merriam, Anita P., Gong, Bendi, Leahy, Patrick, Porter, John D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Muscle tissue is an elegant model for biologic integration of structure with function and is frequently affected by a variety of inherited diseases. Traditional muscle classes‐‐skeletal, cardiac, and smooth‐‐share basic aspects of contractile and energetics mechanisms but also have distinctive role‐specific adaptations. We used large‐scale oligonucleotide microarrays to broaden knowledge of the adaptive expression patterns underlying muscle tissue differences and to identify transcript subsets that are most likely to represent candidate disease genes. Using stringent analysis criteria, we found ≥95 transcripts, which were preferentially expressed by each muscle class and were validated by inclusion of known muscle class‐specific and inherited disease‐related genes. Differentially expressed transcripts not previously identified as class‐specific extend understanding of muscle class transcriptomes and may represent novel muscle‐specific disease genes. We also analyzed the expression profile of extraocular muscle, which is divergent from other skeletal muscles, in the broader context of all major muscle classes. Data show that the extraocular muscle phenotype results from the combination of tissue‐specific transcripts, novel expression levels of skeletal muscle transcripts, and partial sharing of gene expression patterns with cardiac and smooth muscle. These, and additional proteomic data, establish that extraocular muscle does not constitute a distinctive muscle class but that it does occupy a novel niche within the skeletal muscle class.
ISSN:0892-6638
1530-6860
DOI:10.1096/fj.02-1108fje