Loading…
Rotational motion of traveling spots in dissipative systems
What is the origin of rotational motion? An answer is presented through the study of the dynamics for spatially localized spots near codimension 2 singularity consisting of drift and peanut instabilities. The drift instability causes a head-tail asymmetry in spot shape, and the peanut one implies a...
Saved in:
Published in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2009-10, Vol.80 (4 Pt 2), p.046208-046208, Article 046208 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | What is the origin of rotational motion? An answer is presented through the study of the dynamics for spatially localized spots near codimension 2 singularity consisting of drift and peanut instabilities. The drift instability causes a head-tail asymmetry in spot shape, and the peanut one implies a deformation from circular to peanut shape. Rotational motion of spots can be produced by combining these instabilities in a class of three-component reaction-diffusion systems. Partial differential equations dynamics can be reduced to a finite-dimensional one by projecting it to slow modes. Such a reduction clarifies the bifurcational origin of rotational motion of traveling spots in two dimensions in close analogy to the normal form of 1:2 mode interactions. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.80.046208 |