Loading…

Reconstruction of magnetic resonance images using one-dimensional techniques

Whenever DFT (discrete Fourier transform) processing of a multidimensional discrete signal is required, one can apply either a multidimensional FFT (fast Fourier transform) algorithm, or a single-dimension FFT algorithm, both using the same number of points. That is, the dimensions of a "multid...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 1993-12, Vol.12 (4), p.758-763
Main Authors: Vassiliadis, K.P., Angelidis, P.A., Sergiadis, G.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Whenever DFT (discrete Fourier transform) processing of a multidimensional discrete signal is required, one can apply either a multidimensional FFT (fast Fourier transform) algorithm, or a single-dimension FFT algorithm, both using the same number of points. That is, the dimensions of a "multidimensional" signal, and of its spectrum, are a matter of choice. Every multidimensional sequence is completely equivalent to a one-dimensional function in both "time" and "frequency" domains. This statement applied to MRI (magnetic resonance imaging) explains why one can reconstruct the slice by using either one-dimensional or two-dimensional methods, as it is already done in echo planar methods. In the commonly used spin warp methods, the image can be also reconstructed by either one- or two-dimensional processing. However, some artifacts in the images reconstructed from the original "zig-zag" echo planar trajectory, are shown to be due to the wrong dimensionality of the FFT applied.< >
ISSN:0278-0062
1558-254X
DOI:10.1109/42.251127