Loading…

The HECT Ubiquitin Ligase Rsp5p Is Required for Proper Nuclear Export of mRNA in Saccharomyces cerevisiae

The nuclear transport of both proteins and RNAs has attracted considerable interest in recent years. However, regulation pathways of the nuclear transport machineries are still not well characterized. Previous studies indicated that ubiquitination is involved in poly(A)+ RNA nuclear export. For this...

Full description

Saved in:
Bibliographic Details
Published in:Traffic (Copenhagen, Denmark) Denmark), 2003-08, Vol.4 (8), p.566-575
Main Authors: Rodriguez, M. S., Gwizdek, C., Haguenauer‐Tsapis, R., Dargemont, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The nuclear transport of both proteins and RNAs has attracted considerable interest in recent years. However, regulation pathways of the nuclear transport machineries are still not well characterized. Previous studies indicated that ubiquitination is involved in poly(A)+ RNA nuclear export. For this reason, we systematically investigated ubiquitin‐protein ligasess from the homologous to E6‐AP carboxy terminus (HECT) family for potential individual roles in nuclear transport in Saccharomyces cerevisiae. Here we report that Rsp5, an essential yeast ubiquitin ligase involved in many cellular functions, when deleted or mutated in ligase activity, blocks the nuclear export of mRNAs. Affected messenger RNAs include both total poly(A)+ mRNA and heat‐shock mRNAs. Mutation of Rsp5 does not affect nuclear protein import or export. Deletion of RSP5 blocks mRNA export, even under conditions where its essential role in unsaturated fatty acids biosynthesis is bypassed. Using domain mapping, we find that the ligase activity is required for proper mRNA export, indicating that ubiquitination by Rsp5 acts directly or indirectly to affect RNA export. The finding that Rsp5p ligase mutations cause a more pronounced defect at high temperatures suggests that ubiquitination of transport factors by Rsp5p may also be essential during stress conditions.
ISSN:1398-9219
1600-0854
DOI:10.1034/j.1600-0854.2003.00115.x