Loading…
Inheritance patterns of phenolics in F1, F2, and back-cross hybrids of willows: Implications for herbivore responses to hybrid plants
The aim of this study was to determine the inheritance pattern of phenolic secondary compounds in pure and hybrid willows and its consequences for plant resistance to leaf-feeding insects. F1, F2, and back-cross hybrids along with pure species were produced by hand pollination of pure, naturally-gro...
Saved in:
Published in: | Journal of chemical ecology 2003-05, Vol.29 (5), p.1143-1158 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of this study was to determine the inheritance pattern of phenolic secondary compounds in pure and hybrid willows and its consequences for plant resistance to leaf-feeding insects. F1, F2, and back-cross hybrids along with pure species were produced by hand pollination of pure, naturally-growing Salix caprea (L., Salicaceae) and S. repens (L.) plants. Leaf concentrations of condensed tannins and seven different phenolic glucosides were determined by using butanol-HCI and HPLC analyses. Insect herbivore leaf damage was measured on the same leaves as used for chemical analyses. We found hybrids to be approximately intermediate between the parental species: S. caprea with high levels of condensed tannins and no phenolic glucosides. and S. repens with low levels of condensed tannins and high levels of phenolic glucosides. We also found a negative correlation between concentrations of condensed tannins and phenolic glucosides, suggesting a trade-off in production of these two substances. F2 hybrids and the hybrid back-crossed to S. caprea were significantly more damaged by insect herbivores than the parental species and the F1 hybrid, indicating reduced resistance and possibly a selective disadvantage for these hybrid categories. |
---|---|
ISSN: | 0098-0331 1573-1561 |
DOI: | 10.1023/A:1023829506473 |