Loading…
Total luminescence spectroscopy with pattern recognition for classification of edible oils
Total luminescence spectroscopy combined with pattern recognition has been used to discriminate between four different types of edible oils, extra virgin olive (EVO), non-virgin olive (NVO), sunflower (SF) and rapeseed (RS) oils. Simplified fuzzy adaptive resonance theory mapping (SFAM), traditional...
Saved in:
Published in: | Analyst (London) 2003-07, Vol.128 (7), p.966-973 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Total luminescence spectroscopy combined with pattern recognition has been used to discriminate between four different types of edible oils, extra virgin olive (EVO), non-virgin olive (NVO), sunflower (SF) and rapeseed (RS) oils. Simplified fuzzy adaptive resonance theory mapping (SFAM), traditional back propagation (BP) and radial basis function (RBF) neural networks provided 100% classification for 120 samples, SFAM was found to be the most efficient. The investigation was extended to the adulteration of percentage v/v SF or RS in EVO at levels from 5% to 90% creating a total of 480 samples. SFAM was found to be more accurate than RBF and BP for classification of adulterant level. All misclassifications for SFAM occurred at the 5% v/v level resulting in a total of 99.375% correctly classified oil samples. The percentage of adulteration may be described by either RBF network (2.435% RMSE) or a simple Euclidean distance relationship of the principal component analysis (PCA) scores (2.977% RMSE) for v/v RS in EVO adulteration. |
---|---|
ISSN: | 0003-2654 1364-5528 |
DOI: | 10.1039/b303009a |