Loading…

Computer-aided method for quantification of cartilage thickness and volume changes using MRI: validation study using a synthetic model

The primary objective of this study was to develop a computer-aided method for the quantification of three-dimensional (3-D) cartilage changes over time in knees with osteoarthritis (OA). We introduced a local coordinate system (LCS) for the femoral and tibial cartilage boundaries that provides a st...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2003-08, Vol.50 (8), p.978-988
Main Authors: Kauffmann, C., Gravel, P., Godbout, B., Gravel, A., Beaudoin, G., Raynauld, J.-P., Martel-Pelletier, J., Pelletier, J.-P., de Guise, J.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The primary objective of this study was to develop a computer-aided method for the quantification of three-dimensional (3-D) cartilage changes over time in knees with osteoarthritis (OA). We introduced a local coordinate system (LCS) for the femoral and tibial cartilage boundaries that provides a standardized representation of cartilage geometry, thickness, and volume. The LCS can be registered in different data sets from the same patient so that results can be directly compared. Cartilage boundaries are segmented from 3-D magnetic resonance (MR) slices with a semi-automated method and transformed into offset-maps , defined by the LCS. Volumes and thickness are computed from these offset-maps. Further anatomical labeling allows focal volumes to be evaluated in predefined subregions. The accuracy of the automated behavior of the method was assessed, without any human intervention, using realistic, synthetic 3-D MR images of a human knee. The error in thickness evaluation is lower than 0.12 mm for the tibia and femur. Cartilage volumes in anatomical subregions show a coefficient of variation ranging from 0.11% to 0.32%. This method improves noninvasive 3-D analysis of cartilage thickness and volume and is well suited for in vivo follow-up clinical studies of OA knees.
ISSN:0018-9294
1558-2531
DOI:10.1109/TBME.2003.814539