Loading…

Retinal pigment epithelium cell culture on surface modified poly(hydroxybutyrate-co-hydroxyvalerate) thin films

There is currently no effective treatment for the retinal disorders caused by retinal pigment epithelium (RPE) degeneration. Transplantation of allografts is the main strategy towards correction of this malady. Tissue engineering could offer hope and involve the use of biodegradable polymeric templa...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2003-11, Vol.24 (25), p.4573-4583
Main Authors: Tezcaner, A, Bugra, K, Hasırcı, V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There is currently no effective treatment for the retinal disorders caused by retinal pigment epithelium (RPE) degeneration. Transplantation of allografts is the main strategy towards correction of this malady. Tissue engineering could offer hope and involve the use of biodegradable polymeric templates to replace diseased or lost RPE. In this study PHBV8 film was chosen as a temporary substrate for growing retinal pigment epithelium cells as an organized monolayer before their subretinal transplantation. The surface of the PHBV8 film was rendered hydrophilic by oxygen plasma treatment to increase the reattachment of D407 cells on the film surface. Power and duration was changed, from 50 W, 10 min to 100 W, 20 min during plasma treatment. The effect of these two parameters on surface hydrophilicity, morphology, topography, surface composition of PHBV8 thin films was studied using AFM, SEM, and phase contrast microscopy. The effect of changes in surface characteristics on cell reattachment, spreading and cell growth rate was investigated. It was found that as the treatment level was increased the surface hydrophilicity increased and roughness was decreased probably due to ablation. The PHBV8 film treated with 100 W 10 min was found to be the most suitable for 24 h reattachment of D407 cells. The cells were also grown to confluency as an organized monolayer suggesting PHBV8 film as a potential temporary substrate for subretinal transplantation to replace diseased or damaged retinal pigment epithelium.
ISSN:0142-9612
1878-5905
DOI:10.1016/S0142-9612(03)00302-8