Loading…

Sucrose density gradient sedimentation of E. coli ribosomes

The behavior of E. coli ribosomes during sedimentation on sucrose gradients is predicted under a variety of conditions by computer simulations. Since numerous recent kinetic studies indicate equilibration in times short compared to the time of sedimentation, these simulations assume that the system...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical chemistry 1977-11, Vol.7 (3), p.173-178
Main Authors: Chaires, J.B., Kegeles, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The behavior of E. coli ribosomes during sedimentation on sucrose gradients is predicted under a variety of conditions by computer simulations. Since numerous recent kinetic studies indicate equilibration in times short compared to the time of sedimentation, these simulations assume that the system attains local reaction equilibrium at every point in the gradient at all times. For any type of homogeneous equilibrating ribosome population, governed by a single formation constant at one atmosphere pressure for 70S couples, no more than two clearly defined zones will be resolved, although the presence of large dissociating effects due to pressure gradients in high speed experiments will spread the subunit zone. Normally the pattern will consist of a 30S zone and a so-called “70S” zone, which is in reality a mixture of 70S couples and 30S and 50S subunits in local equilibrium. The greater the dissociation into subunits, the more the “70S” zone will be slowed below the nominal rate of 70 Svedberg units. If ribosomes have been collected from the “70S” zone in several successive cycles of purification, the repeated deletion of resolved 30S subunits can result in a preparation with so large a molar excess of 50S subunits that the ensuing sucrose density gradient sedimentation pattern may exhibit a “70S” zone followed by zone of 50S subunits, instead of a zone of 30S subunits. Our most important conclusion is that whenever a well-resolved 50S zone is present in a sucrose density gradient sedimentation experiment on E. coli ribosomes, in addition to a 30S and a “70S” zone, under conditions where ribosomes and subunits should be in reversible equilibrium, the preparation must be microheterogeneous, containing a mixture of “tight” and “loose” couples. Moreover in such cases the content of large subunits in the 50S zone must be derived entirely from “loose” couples whereas the 30S zone must contain small subunits derived from both “tight” and “loose” couples. Sedimentation patterns predicted for various mixtures of “tight” and “loose” couples display all the major characteristics of published experimental patterns for E. coli ribosomes, including the partial or complete resolution into three zones, depending on rotor velocity and level of Mg 2+.
ISSN:0301-4622
1873-4200
DOI:10.1016/0301-4622(77)87019-1