Loading…

Cloning and Deduced Amino Acid Sequence of a Novel Cartilage Protein (CILP) Identifies a Proform Including a Nucleotide Pyrophosphohydrolase

The cDNA cloning and expression in vitro and in eukaryotic cells of a novel protein isolated from human articular cartilage, cartilage intermediate layer protein (CILP) is described. A single 4.2-kilobase mRNA detected in human articular cartilage encodes a polypeptide of 1184 amino acids with a cal...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1998-09, Vol.273 (36), p.23469-23475
Main Authors: Lorenzo, Pilar, Neame, Peter, Sommarin, Yngve, Heinegård, Dick
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The cDNA cloning and expression in vitro and in eukaryotic cells of a novel protein isolated from human articular cartilage, cartilage intermediate layer protein (CILP) is described. A single 4.2-kilobase mRNA detected in human articular cartilage encodes a polypeptide of 1184 amino acids with a calculated molecular mass of 132.5 kDa. The protein has a putative signal peptide of 21 amino acids, and is a proform of two polypeptides. The amino-terminal half corresponds to CILP (molecular mass of 78.5 kDa, not including post-translational modifications) and the carboxyl-terminal half corresponds to a protein homologous to a porcine nucleotide pyrophosphohydrolase, NTPPHase (molecular mass of 51.8 kDa, not including post-translational modifications). CILP has 30 cysteines and six putative N-glycosylation sites. The human homolog of porcine NTPPHase described here contains 10 cysteine residues and two putative N-glycosylation sites. In the precursor protein the NTPPHase region is immediately preceded by a tetrapeptide conforming to a furin proteinase cleavage consensus sequence. Expression of the full-length cDNA in a cell-free translation system and in COS-7 or EBNA cells indicates that the precursor protein is synthesized as a single polypeptide chain that is processed, possibly by a furin-like protease, into two polypeptides upon or preceding secretion.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.273.36.23469