Loading…

Cu,Zn Superoxide Dismutase from Photobacterium leiognathi Is an Hyperefficient Enzyme

The catalytic rate constant of recombinant Photobacterium leiognathi Cu,Zn superoxide dismutase has been determined as a function of pH by pulse radiolysis. At pH 7 and low ionic strength (I = 0.02 M) the catalytic rate constant is 8.5 x 10(9) M-1 s-1, more than two times the value found for all the...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 1998-09, Vol.37 (35), p.12287-12292
Main Authors: STROPPOLO, Maria Elena, SETTE, Marco, O'NEILL, Peter, POLIZIO, Francesca, CAMBRIA, Maria Teresa, DESIDERI, Alessandro
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The catalytic rate constant of recombinant Photobacterium leiognathi Cu,Zn superoxide dismutase has been determined as a function of pH by pulse radiolysis. At pH 7 and low ionic strength (I = 0.02 M) the catalytic rate constant is 8.5 x 10(9) M-1 s-1, more than two times the value found for all the native eukaryotic Cu,Zn superoxide dismutases investigated to date. Similarly, Brownian dynamics simulations indicate an enzyme-substrate association rate more than two times higher than that found for bovine Cu,Zn superoxide dismutase. Titration of the paramagnetic contribution to the water proton relaxation rate of the P. leiognathi with increasing concentration of halide ions with different radii indicates that the proteic channel delimiting the active site is wider than 4.4 A. This is at variance with that found on the eukariotic enzymes, and provides a rationale for the high catalytic rate of the bacterial enzyme. Evidence for solvent exposure of the active site different from that observed in the eukaryotic enzyme is suggested from the pH dependence of the water proton relaxation rate and of the EPR spectrum line shape, which indicate the occurrence of a prototropic equilibrium at pH 9.1 and 9.0, respectively. The pH dependence of the P. leiognathi catalytic rate has a trend different from that observed in the bovine enzyme, indicating that groups differently exposed to the solvent are involved in the modulation of the enzyme-substrate encounter.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi980563b