Loading…
Continuity in the plastic strain rate and its influence on texture evolution
Classical plasticity models evolve state variables in a spatially independent manner through (local) ordinary differential equations, such as in the update of the rotation field in crystal plasticity. A continuity condition is derived for the lattice rotation field from a conservation law for Burger...
Saved in:
Published in: | Journal of the mechanics and physics of solids 2010-02, Vol.58 (2), p.105-128 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Classical plasticity models evolve state variables in a spatially independent manner through (local) ordinary differential equations, such as in the update of the rotation field in crystal plasticity. A continuity condition is derived for the lattice rotation field from a conservation law for Burgers vector content—a consequence of an averaged field theory of dislocation mechanics. This results in a nonlocal evolution equation for the lattice rotation field. The continuity condition provides a theoretical basis for assumptions of co-rotation models of crystal plasticity. The simulation of lattice rotations and texture evolution provides evidence for the importance of continuity in modeling of classical plasticity. The possibility of predicting continuous fields of lattice rotations with sharp gradients representing non-singular dislocation distributions within rigid viscoplasticity is discussed and computationally demonstrated. |
---|---|
ISSN: | 0022-5096 |
DOI: | 10.1016/j.jmps.2009.11.005 |