Loading…
A Crosslinked Cofactor in Lysyl Oxidase: Redox Function for Amino Acid Side Chains
A previously unknown redox cofactor has been identified in the active site of lysyl oxidase from the bovine aorta. Edman sequencing, mass spectrometry, ultraviolet-visible spectra, and resonance Raman studies showed that this cofactor is a quinone. Its structure is derived from the crosslinking of t...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 1996-08, Vol.273 (5278), p.1078-1084 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A previously unknown redox cofactor has been identified in the active site of lysyl oxidase from the bovine aorta. Edman sequencing, mass spectrometry, ultraviolet-visible spectra, and resonance Raman studies showed that this cofactor is a quinone. Its structure is derived from the crosslinking of the ε-amino group of a peptidyl lysine with the modified side chain of a tyrosyl residue, and it has been designated lysine tyrosylquinone. This quinone appears to be the only example of a mammalian cofactor formed from the crosslinking of two amino acid side chains. This discovery expands the range of known quino-cofactor structures and has implications for the mechanism of their biogenesis. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.273.5278.1078 |