Loading…
Modeling ion implantation of HgCdTe
Ion implantation of boron is used to create n on p photodiodes in vacancy-doped mercury cadmium telluride (MCT). The junction is formed by Hg interstitials from the implant damage region diffusing into the MCT and annihilating Hg vacancies. The resultant doping profile is n^sup +^/n^sup -^/p, where...
Saved in:
Published in: | Journal of electronic materials 1996-08, Vol.25 (8), p.1336-1340 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-1e206b4379f8acba736921e43361e99c094ece025657c4ef60402138cb3b7a303 |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-1e206b4379f8acba736921e43361e99c094ece025657c4ef60402138cb3b7a303 |
container_end_page | 1340 |
container_issue | 8 |
container_start_page | 1336 |
container_title | Journal of electronic materials |
container_volume | 25 |
creator | Robinson, H G Mao, D H Williams, B L Holander-Gleixner, S |
description | Ion implantation of boron is used to create n on p photodiodes in vacancy-doped mercury cadmium telluride (MCT). The junction is formed by Hg interstitials from the implant damage region diffusing into the MCT and annihilating Hg vacancies. The resultant doping profile is n^sup +^/n^sup -^/p, where the n^sup +^ region is near the surface and roughly coincides with the implant damage, the n^sup -^ region is where Hg vacancies have been annihilated revealing a residual grown-in donor, and the p region remains doped by Hg vacancy double acceptors. We have recently developed a new process modeling tool for simulating junction formation in MCT by ion implantation. The interstitial source in the damage region is represented by stored interstitials whose distribution depends on the implant dose. These interstitials are released into the bulk at a constant, user defined rate. Once released, they diffuse away from the damage region and annihilate any Hg vacancies they encounter. In this paper, we present results of simulations using this tool and show how it can be used to quantitatively analyze the effects of variations in processing conditions, including implant dose, annealing temperature, and doping background. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/BF02655029 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743282023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1320358111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-1e206b4379f8acba736921e43361e99c094ece025657c4ef60402138cb3b7a303</originalsourceid><addsrcrecordid>eNpdkEFLAzEUhIMoWKsXf0HRgyCsvryXZLNHLdYKFS8VvIVs-rZs2W7qZnvw37tFQfA0DHzMDCPEpYQ7CZDfP84AjdaAxZEYSa0ok9Z8HIsRkJGZRtKn4iylDYDU0sqRuH6NK27qdj2pYzupt7vGt73vDyZWk_l6ulryuTipfJP44lfH4n32tJzOs8Xb88v0YZEFtLbPJCOYUlFeVNaH0udkCpSsaKjmoghQKA4MqI3Og-LKgAKUZENJZe4JaCxufnJ3Xfzcc-rdtk6Bm2ESx31yuSK0CEgDefWP3MR91w7jHIKyylqLA3T7A4UuptRx5XZdvfXdl5PgDm-5v7foG4mhWIU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204848882</pqid></control><display><type>article</type><title>Modeling ion implantation of HgCdTe</title><source>Springer Online Journal Archives (Through 1996)</source><creator>Robinson, H G ; Mao, D H ; Williams, B L ; Holander-Gleixner, S</creator><creatorcontrib>Robinson, H G ; Mao, D H ; Williams, B L ; Holander-Gleixner, S</creatorcontrib><description>Ion implantation of boron is used to create n on p photodiodes in vacancy-doped mercury cadmium telluride (MCT). The junction is formed by Hg interstitials from the implant damage region diffusing into the MCT and annihilating Hg vacancies. The resultant doping profile is n^sup +^/n^sup -^/p, where the n^sup +^ region is near the surface and roughly coincides with the implant damage, the n^sup -^ region is where Hg vacancies have been annihilated revealing a residual grown-in donor, and the p region remains doped by Hg vacancy double acceptors. We have recently developed a new process modeling tool for simulating junction formation in MCT by ion implantation. The interstitial source in the damage region is represented by stored interstitials whose distribution depends on the implant dose. These interstitials are released into the bulk at a constant, user defined rate. Once released, they diffuse away from the damage region and annihilate any Hg vacancies they encounter. In this paper, we present results of simulations using this tool and show how it can be used to quantitatively analyze the effects of variations in processing conditions, including implant dose, annealing temperature, and doping background. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/BF02655029</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Warrendale: Springer Nature B.V</publisher><subject>Annealing ; Electrical engineering ; Ion implantation ; Mercury cadmium telluride</subject><ispartof>Journal of electronic materials, 1996-08, Vol.25 (8), p.1336-1340</ispartof><rights>Copyright Minerals, Metals & Materials Society Aug 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-1e206b4379f8acba736921e43361e99c094ece025657c4ef60402138cb3b7a303</citedby><cites>FETCH-LOGICAL-c288t-1e206b4379f8acba736921e43361e99c094ece025657c4ef60402138cb3b7a303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Robinson, H G</creatorcontrib><creatorcontrib>Mao, D H</creatorcontrib><creatorcontrib>Williams, B L</creatorcontrib><creatorcontrib>Holander-Gleixner, S</creatorcontrib><title>Modeling ion implantation of HgCdTe</title><title>Journal of electronic materials</title><description>Ion implantation of boron is used to create n on p photodiodes in vacancy-doped mercury cadmium telluride (MCT). The junction is formed by Hg interstitials from the implant damage region diffusing into the MCT and annihilating Hg vacancies. The resultant doping profile is n^sup +^/n^sup -^/p, where the n^sup +^ region is near the surface and roughly coincides with the implant damage, the n^sup -^ region is where Hg vacancies have been annihilated revealing a residual grown-in donor, and the p region remains doped by Hg vacancy double acceptors. We have recently developed a new process modeling tool for simulating junction formation in MCT by ion implantation. The interstitial source in the damage region is represented by stored interstitials whose distribution depends on the implant dose. These interstitials are released into the bulk at a constant, user defined rate. Once released, they diffuse away from the damage region and annihilate any Hg vacancies they encounter. In this paper, we present results of simulations using this tool and show how it can be used to quantitatively analyze the effects of variations in processing conditions, including implant dose, annealing temperature, and doping background. [PUBLICATION ABSTRACT]</description><subject>Annealing</subject><subject>Electrical engineering</subject><subject>Ion implantation</subject><subject>Mercury cadmium telluride</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLAzEUhIMoWKsXf0HRgyCsvryXZLNHLdYKFS8VvIVs-rZs2W7qZnvw37tFQfA0DHzMDCPEpYQ7CZDfP84AjdaAxZEYSa0ok9Z8HIsRkJGZRtKn4iylDYDU0sqRuH6NK27qdj2pYzupt7vGt73vDyZWk_l6ulryuTipfJP44lfH4n32tJzOs8Xb88v0YZEFtLbPJCOYUlFeVNaH0udkCpSsaKjmoghQKA4MqI3Og-LKgAKUZENJZe4JaCxufnJ3Xfzcc-rdtk6Bm2ESx31yuSK0CEgDefWP3MR91w7jHIKyylqLA3T7A4UuptRx5XZdvfXdl5PgDm-5v7foG4mhWIU</recordid><startdate>19960801</startdate><enddate>19960801</enddate><creator>Robinson, H G</creator><creator>Mao, D H</creator><creator>Williams, B L</creator><creator>Holander-Gleixner, S</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>19960801</creationdate><title>Modeling ion implantation of HgCdTe</title><author>Robinson, H G ; Mao, D H ; Williams, B L ; Holander-Gleixner, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-1e206b4379f8acba736921e43361e99c094ece025657c4ef60402138cb3b7a303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Annealing</topic><topic>Electrical engineering</topic><topic>Ion implantation</topic><topic>Mercury cadmium telluride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robinson, H G</creatorcontrib><creatorcontrib>Mao, D H</creatorcontrib><creatorcontrib>Williams, B L</creatorcontrib><creatorcontrib>Holander-Gleixner, S</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robinson, H G</au><au>Mao, D H</au><au>Williams, B L</au><au>Holander-Gleixner, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling ion implantation of HgCdTe</atitle><jtitle>Journal of electronic materials</jtitle><date>1996-08-01</date><risdate>1996</risdate><volume>25</volume><issue>8</issue><spage>1336</spage><epage>1340</epage><pages>1336-1340</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>Ion implantation of boron is used to create n on p photodiodes in vacancy-doped mercury cadmium telluride (MCT). The junction is formed by Hg interstitials from the implant damage region diffusing into the MCT and annihilating Hg vacancies. The resultant doping profile is n^sup +^/n^sup -^/p, where the n^sup +^ region is near the surface and roughly coincides with the implant damage, the n^sup -^ region is where Hg vacancies have been annihilated revealing a residual grown-in donor, and the p region remains doped by Hg vacancy double acceptors. We have recently developed a new process modeling tool for simulating junction formation in MCT by ion implantation. The interstitial source in the damage region is represented by stored interstitials whose distribution depends on the implant dose. These interstitials are released into the bulk at a constant, user defined rate. Once released, they diffuse away from the damage region and annihilate any Hg vacancies they encounter. In this paper, we present results of simulations using this tool and show how it can be used to quantitatively analyze the effects of variations in processing conditions, including implant dose, annealing temperature, and doping background. [PUBLICATION ABSTRACT]</abstract><cop>Warrendale</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02655029</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 1996-08, Vol.25 (8), p.1336-1340 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_miscellaneous_743282023 |
source | Springer Online Journal Archives (Through 1996) |
subjects | Annealing Electrical engineering Ion implantation Mercury cadmium telluride |
title | Modeling ion implantation of HgCdTe |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20ion%20implantation%20of%20HgCdTe&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Robinson,%20H%20G&rft.date=1996-08-01&rft.volume=25&rft.issue=8&rft.spage=1336&rft.epage=1340&rft.pages=1336-1340&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/BF02655029&rft_dat=%3Cproquest_cross%3E1320358111%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-1e206b4379f8acba736921e43361e99c094ece025657c4ef60402138cb3b7a303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204848882&rft_id=info:pmid/&rfr_iscdi=true |