Loading…

Modeling ion implantation of HgCdTe

Ion implantation of boron is used to create n on p photodiodes in vacancy-doped mercury cadmium telluride (MCT). The junction is formed by Hg interstitials from the implant damage region diffusing into the MCT and annihilating Hg vacancies. The resultant doping profile is n^sup +^/n^sup -^/p, where...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 1996-08, Vol.25 (8), p.1336-1340
Main Authors: Robinson, H G, Mao, D H, Williams, B L, Holander-Gleixner, S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-1e206b4379f8acba736921e43361e99c094ece025657c4ef60402138cb3b7a303
cites cdi_FETCH-LOGICAL-c288t-1e206b4379f8acba736921e43361e99c094ece025657c4ef60402138cb3b7a303
container_end_page 1340
container_issue 8
container_start_page 1336
container_title Journal of electronic materials
container_volume 25
creator Robinson, H G
Mao, D H
Williams, B L
Holander-Gleixner, S
description Ion implantation of boron is used to create n on p photodiodes in vacancy-doped mercury cadmium telluride (MCT). The junction is formed by Hg interstitials from the implant damage region diffusing into the MCT and annihilating Hg vacancies. The resultant doping profile is n^sup +^/n^sup -^/p, where the n^sup +^ region is near the surface and roughly coincides with the implant damage, the n^sup -^ region is where Hg vacancies have been annihilated revealing a residual grown-in donor, and the p region remains doped by Hg vacancy double acceptors. We have recently developed a new process modeling tool for simulating junction formation in MCT by ion implantation. The interstitial source in the damage region is represented by stored interstitials whose distribution depends on the implant dose. These interstitials are released into the bulk at a constant, user defined rate. Once released, they diffuse away from the damage region and annihilate any Hg vacancies they encounter. In this paper, we present results of simulations using this tool and show how it can be used to quantitatively analyze the effects of variations in processing conditions, including implant dose, annealing temperature, and doping background. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/BF02655029
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743282023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1320358111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-1e206b4379f8acba736921e43361e99c094ece025657c4ef60402138cb3b7a303</originalsourceid><addsrcrecordid>eNpdkEFLAzEUhIMoWKsXf0HRgyCsvryXZLNHLdYKFS8VvIVs-rZs2W7qZnvw37tFQfA0DHzMDCPEpYQ7CZDfP84AjdaAxZEYSa0ok9Z8HIsRkJGZRtKn4iylDYDU0sqRuH6NK27qdj2pYzupt7vGt73vDyZWk_l6ulryuTipfJP44lfH4n32tJzOs8Xb88v0YZEFtLbPJCOYUlFeVNaH0udkCpSsaKjmoghQKA4MqI3Og-LKgAKUZENJZe4JaCxufnJ3Xfzcc-rdtk6Bm2ESx31yuSK0CEgDefWP3MR91w7jHIKyylqLA3T7A4UuptRx5XZdvfXdl5PgDm-5v7foG4mhWIU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204848882</pqid></control><display><type>article</type><title>Modeling ion implantation of HgCdTe</title><source>Springer Online Journal Archives (Through 1996)</source><creator>Robinson, H G ; Mao, D H ; Williams, B L ; Holander-Gleixner, S</creator><creatorcontrib>Robinson, H G ; Mao, D H ; Williams, B L ; Holander-Gleixner, S</creatorcontrib><description>Ion implantation of boron is used to create n on p photodiodes in vacancy-doped mercury cadmium telluride (MCT). The junction is formed by Hg interstitials from the implant damage region diffusing into the MCT and annihilating Hg vacancies. The resultant doping profile is n^sup +^/n^sup -^/p, where the n^sup +^ region is near the surface and roughly coincides with the implant damage, the n^sup -^ region is where Hg vacancies have been annihilated revealing a residual grown-in donor, and the p region remains doped by Hg vacancy double acceptors. We have recently developed a new process modeling tool for simulating junction formation in MCT by ion implantation. The interstitial source in the damage region is represented by stored interstitials whose distribution depends on the implant dose. These interstitials are released into the bulk at a constant, user defined rate. Once released, they diffuse away from the damage region and annihilate any Hg vacancies they encounter. In this paper, we present results of simulations using this tool and show how it can be used to quantitatively analyze the effects of variations in processing conditions, including implant dose, annealing temperature, and doping background. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/BF02655029</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Warrendale: Springer Nature B.V</publisher><subject>Annealing ; Electrical engineering ; Ion implantation ; Mercury cadmium telluride</subject><ispartof>Journal of electronic materials, 1996-08, Vol.25 (8), p.1336-1340</ispartof><rights>Copyright Minerals, Metals &amp; Materials Society Aug 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-1e206b4379f8acba736921e43361e99c094ece025657c4ef60402138cb3b7a303</citedby><cites>FETCH-LOGICAL-c288t-1e206b4379f8acba736921e43361e99c094ece025657c4ef60402138cb3b7a303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Robinson, H G</creatorcontrib><creatorcontrib>Mao, D H</creatorcontrib><creatorcontrib>Williams, B L</creatorcontrib><creatorcontrib>Holander-Gleixner, S</creatorcontrib><title>Modeling ion implantation of HgCdTe</title><title>Journal of electronic materials</title><description>Ion implantation of boron is used to create n on p photodiodes in vacancy-doped mercury cadmium telluride (MCT). The junction is formed by Hg interstitials from the implant damage region diffusing into the MCT and annihilating Hg vacancies. The resultant doping profile is n^sup +^/n^sup -^/p, where the n^sup +^ region is near the surface and roughly coincides with the implant damage, the n^sup -^ region is where Hg vacancies have been annihilated revealing a residual grown-in donor, and the p region remains doped by Hg vacancy double acceptors. We have recently developed a new process modeling tool for simulating junction formation in MCT by ion implantation. The interstitial source in the damage region is represented by stored interstitials whose distribution depends on the implant dose. These interstitials are released into the bulk at a constant, user defined rate. Once released, they diffuse away from the damage region and annihilate any Hg vacancies they encounter. In this paper, we present results of simulations using this tool and show how it can be used to quantitatively analyze the effects of variations in processing conditions, including implant dose, annealing temperature, and doping background. [PUBLICATION ABSTRACT]</description><subject>Annealing</subject><subject>Electrical engineering</subject><subject>Ion implantation</subject><subject>Mercury cadmium telluride</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLAzEUhIMoWKsXf0HRgyCsvryXZLNHLdYKFS8VvIVs-rZs2W7qZnvw37tFQfA0DHzMDCPEpYQ7CZDfP84AjdaAxZEYSa0ok9Z8HIsRkJGZRtKn4iylDYDU0sqRuH6NK27qdj2pYzupt7vGt73vDyZWk_l6ulryuTipfJP44lfH4n32tJzOs8Xb88v0YZEFtLbPJCOYUlFeVNaH0udkCpSsaKjmoghQKA4MqI3Og-LKgAKUZENJZe4JaCxufnJ3Xfzcc-rdtk6Bm2ESx31yuSK0CEgDefWP3MR91w7jHIKyylqLA3T7A4UuptRx5XZdvfXdl5PgDm-5v7foG4mhWIU</recordid><startdate>19960801</startdate><enddate>19960801</enddate><creator>Robinson, H G</creator><creator>Mao, D H</creator><creator>Williams, B L</creator><creator>Holander-Gleixner, S</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>19960801</creationdate><title>Modeling ion implantation of HgCdTe</title><author>Robinson, H G ; Mao, D H ; Williams, B L ; Holander-Gleixner, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-1e206b4379f8acba736921e43361e99c094ece025657c4ef60402138cb3b7a303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Annealing</topic><topic>Electrical engineering</topic><topic>Ion implantation</topic><topic>Mercury cadmium telluride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robinson, H G</creatorcontrib><creatorcontrib>Mao, D H</creatorcontrib><creatorcontrib>Williams, B L</creatorcontrib><creatorcontrib>Holander-Gleixner, S</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robinson, H G</au><au>Mao, D H</au><au>Williams, B L</au><au>Holander-Gleixner, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling ion implantation of HgCdTe</atitle><jtitle>Journal of electronic materials</jtitle><date>1996-08-01</date><risdate>1996</risdate><volume>25</volume><issue>8</issue><spage>1336</spage><epage>1340</epage><pages>1336-1340</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>Ion implantation of boron is used to create n on p photodiodes in vacancy-doped mercury cadmium telluride (MCT). The junction is formed by Hg interstitials from the implant damage region diffusing into the MCT and annihilating Hg vacancies. The resultant doping profile is n^sup +^/n^sup -^/p, where the n^sup +^ region is near the surface and roughly coincides with the implant damage, the n^sup -^ region is where Hg vacancies have been annihilated revealing a residual grown-in donor, and the p region remains doped by Hg vacancy double acceptors. We have recently developed a new process modeling tool for simulating junction formation in MCT by ion implantation. The interstitial source in the damage region is represented by stored interstitials whose distribution depends on the implant dose. These interstitials are released into the bulk at a constant, user defined rate. Once released, they diffuse away from the damage region and annihilate any Hg vacancies they encounter. In this paper, we present results of simulations using this tool and show how it can be used to quantitatively analyze the effects of variations in processing conditions, including implant dose, annealing temperature, and doping background. [PUBLICATION ABSTRACT]</abstract><cop>Warrendale</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02655029</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 1996-08, Vol.25 (8), p.1336-1340
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_miscellaneous_743282023
source Springer Online Journal Archives (Through 1996)
subjects Annealing
Electrical engineering
Ion implantation
Mercury cadmium telluride
title Modeling ion implantation of HgCdTe
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20ion%20implantation%20of%20HgCdTe&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Robinson,%20H%20G&rft.date=1996-08-01&rft.volume=25&rft.issue=8&rft.spage=1336&rft.epage=1340&rft.pages=1336-1340&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/BF02655029&rft_dat=%3Cproquest_cross%3E1320358111%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-1e206b4379f8acba736921e43361e99c094ece025657c4ef60402138cb3b7a303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204848882&rft_id=info:pmid/&rfr_iscdi=true