Loading…
Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception
CRYPTOCHROME (CRY) is the primary circadian photoreceptor in Drosophila. We show that CRY binding to TIMELESS (TIM) is light-dependent in flies and irreversibly commits TIM to proteasomal degradation. In contrast, CRY degradation is dependent on continuous light exposure, indicating that the CRY-TIM...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2004-06, Vol.304 (5676), p.1503-1506 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | CRYPTOCHROME (CRY) is the primary circadian photoreceptor in Drosophila. We show that CRY binding to TIMELESS (TIM) is light-dependent in flies and irreversibly commits TIM to proteasomal degradation. In contrast, CRY degradation is dependent on continuous light exposure, indicating that the CRY-TIM interaction is transient. A novel cry mutation (crym) reveals that CRY's photolyase homology domain is sufficient for light detection and phototransduction, whereas the carboxyl-terminal domain regulates CRY stability, CRY-TIM interaction, and circadian photosensitivity. This contrasts with the function of Arabidopsis CRY domains and demonstrates that insect and plant cryptochromes use different mechanisms. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1096973 |