Loading…
Manifolds with small Dirac eigenvalues are nilmanifolds
This study shows that if the square of the Dirac operator on such a manifold has r small eigenvalues, then the manifold is diffeomorphic to a nilmanifold and has trivial spin structure. Equivalently, if M is not a nilmanifold or if M is a nilmanifold with a non-trivial spin structure, then there exi...
Saved in:
Published in: | Annals of global analysis and geometry 2007-06, Vol.31 (4), p.409-425 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study shows that if the square of the Dirac operator on such a manifold has r small eigenvalues, then the manifold is diffeomorphic to a nilmanifold and has trivial spin structure. Equivalently, if M is not a nilmanifold or if M is a nilmanifold with a non-trivial spin structure, then there exists a uniform lower bound on the r-th eigenvalue of the square of the Dirac operator. If a manifold with almost non-negative scalar curvature has one small Dirac eigenvalue, and if the volume is not too small, then we show that the metric is close to a Ricci-flat metric on M with a parallel spinor. In dimension 4 this implies that M is either a torus or a K3-surface. |
---|---|
ISSN: | 0232-704X 1572-9060 |
DOI: | 10.1007/s10455-006-9048-2 |