Loading…
Computing the block factorization of complex Hankel matrices
In this paper, we present an algorithm for finding an approximate block diagonalization of complex Hankel matrices. Our method is based on inversion techniques of an upper triangular Toeplitz matrix, specifically, by simple forward substitution. We also consider an approximate block diagonalization...
Saved in:
Published in: | Computing 2010-05, Vol.87 (3-4), p.169-186 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we present an algorithm for finding an approximate block diagonalization of complex Hankel matrices. Our method is based on inversion techniques of an upper triangular Toeplitz matrix, specifically, by simple forward substitution. We also consider an approximate block diagonalization of complex Hankel matrices via Schur complementation. An application of our algorithm by calculating the approximate polynomial quotient and remainder appearing in the Euclidean algorithm is also given. We have implemented our algorithms in Matlab. Numerical examples are included. They show the effectiveness of our strategy. |
---|---|
ISSN: | 0010-485X 1436-5057 |
DOI: | 10.1007/s00607-010-0080-5 |