Loading…

Design and Development of a Long Fiber Thermoplastic Bus Seat

Long fiber thermoplastics (LFTs) are increasingly being used in automotive applications for front-ends, bumper beams, dashboards, and under body shields. They have a significant potential for mass-transit applications in buses, trucks, and railroad vehicles. The LFTs are processed with a thermoplast...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermoplastic composite materials 2006-03, Vol.19 (2), p.131-154
Main Authors: Bartus, S. D., Vaidya, U. K., Ulven, C. A.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Long fiber thermoplastics (LFTs) are increasingly being used in automotive applications for front-ends, bumper beams, dashboards, and under body shields. They have a significant potential for mass-transit applications in buses, trucks, and railroad vehicles. The LFTs are processed with a thermoplastic matrix such as polypropylene (PP) or polyamide (PAI) reinforced with long glass (or carbon, aramid, etc.) fibers, with starting fiber lengths >12 mm, through a pultrusion processing method. The LFT components are typically produced using extrusion-compression molding. In the present work, a bus seat was chosen as a candidate component to assess the viability of LFT technology to reduce weight and cost, without compromising performance over presently used designs. A conservative estimate of 43% weight reduction and 18% cost reduction per seat was predicted over presently implemented seat designs that contain a circumferential steel frame. Cadpress-Thermoplastic (EXPRESS) compression molding software for LFTs was utilized for the process modeling. Flow simulation during the compression molding of E-glass/PP LFT was conducted. Finite element stress analysis was conducted to verify mechanical properties developed as a result of fiber orientation and distribution after flow simulation. This article covers the design, process modeling, component verification, and manufacturing studies conducted for the LFT bus seat.
ISSN:0892-7057
1530-7980
DOI:10.1177/0892705706062184