Loading…
Thermodynamic evaluation of the phase equilibria and glass-forming ability of the Ti−Be system
The glass-forming ability of Ti-Be alloys is of great interest. Experimental and theoretical evaluations of the glass-forming ability of this binary alloy show that the formation of a metastable TiBe phase with a CsCl-type B2 structure controls the glass-forming ability in this system. However, ther...
Saved in:
Published in: | Journal of phase equilibria and diffusion 2006-02, Vol.27 (1), p.83-91 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The glass-forming ability of Ti-Be alloys is of great interest. Experimental and theoretical evaluations of the glass-forming ability of this binary alloy show that the formation of a metastable TiBe phase with a CsCl-type B2 structure controls the glass-forming ability in this system. However, there is no information on the thermochemical properties of metastable TiBe for the quantitative evaluation of the glass-forming ability using Davies-Uhlmann kinetic formulations. We have carried out a thermodynamic analysis using experimental phase diagram data and the energy of formation of the stoichiometric compounds from ab initio calculations. Furthermore, the Gibbs energy of formation for the body-centered cubic (bcc) phase was evaluated over the entire composition range by applying the cluster expansion method (CEM) to the total energy of some bcc-based ordered structures obtained from ab initio calculations. For the bcc phase, the two-sublattice formalism, (Ti, Be)^sub 0.5^(Ti,Be)^sub 0.5^, was adopted to describe the A2/B2 transformation. A good agreement between the calculated values and experimental phase equilibria was obtained. Evaluation of the glass-forming ability was also attempted utilizing the thermodynamic quantities obtained from the phase diagram assessment. The calculated glass-forming ability agrees well with the experimental results.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1547-7037 1863-7345 1934-7243 |
DOI: | 10.1361/105497106X92844 |