Loading…
The Quantum-Classical Metal
In a normal Fermi liquid, Landau's theory precludes the loss of single-fermion quantum coherence in the low-energy, low-temperature limit. For highly anisotropic, strongly correlated metals, there is no proof that this remains the case, and quantum coherence for transport in some directions may...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 1998-03, Vol.279 (5359), p.2071-2076 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In a normal Fermi liquid, Landau's theory precludes the loss of single-fermion quantum coherence in the low-energy, low-temperature limit. For highly anisotropic, strongly correlated metals, there is no proof that this remains the case, and quantum coherence for transport in some directions may be lost intrinsically. This loss of coherence should stabilize an unusual, qualitatively anisotropic non-Fermi liquid, separated by a zero-temperature quantum phase transition from the Fermi liquid state and categorized by the unobservability of certain interference effects. There is compelling experimental evidence for this transition as a function of magnetic field in the metallic phase of the organic conductor (TMTSF)$_2$PF$_6$ (where TMTSF is tetramethyltetraselenafulvalene). |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.279.5359.2071 |