Loading…

Breath biomarkers of active pulmonary tuberculosis

Summary Background Volatile organic compounds (VOCs) in breath may contain biomarkers of active pulmonary tuberculosis derived from the infectious organism (metabolites of Mycobacterium tuberculosis) and from the infected host (products of oxidative stress). Methods We analyzed breath VOCs in 226 sy...

Full description

Saved in:
Bibliographic Details
Published in:Tuberculosis (Edinburgh, Scotland) Scotland), 2010-03, Vol.90 (2), p.145-151
Main Authors: Phillips, Michael, Basa-Dalay, Victoria, Bothamley, Graham, Cataneo, Renee N, Lam, Phung Kim, Natividad, Maria Piedad R, Schmitt, Peter, Wai, James
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary Background Volatile organic compounds (VOCs) in breath may contain biomarkers of active pulmonary tuberculosis derived from the infectious organism (metabolites of Mycobacterium tuberculosis) and from the infected host (products of oxidative stress). Methods We analyzed breath VOCs in 226 symptomatic high-risk patients in USA, Philippines, and UK, using gas chromatography/mass spectroscopy. Diagnosis of disease was based on sputum culture, smear microscopy, chest radiography and clinical suspicion of tuberculosis (CSTB). Chromatograms were converted to a series of 8 s overlapping time slices. Biomarkers of active pulmonary tuberculosis were identified with a Monte Carlo analysis of time-slice alveolar gradients (abundance in breath minus abundance in room air). Results Breath VOCs contained apparent biomarkers of active pulmonary tuberculosis comprising oxidative stress products (alkanes and alkane derivatives) and volatile metabolites of M. tuberculosis (cyclohexane and benzene derivatives). Breath biomarkers identified active pulmonary tuberculosis with C-statistic (area under curve of receiver operating characteristic) = 0.85 (i.e. 85% overall accuracy, sensitivity = 84.0%, specificity = 64.7%) when sputum culture, microscopy, and chest radiography were either all positive or all negative. Employing a single criterion of disease, C-statistic = 0.76 (smear microscopy), 0.68 (sputum culture), 0.66 (chest radiography) and 0.65 (CSTB). Conclusion A breath test identified apparent biomarkers of active pulmonary tuberculosis with 85% accuracy in symptomatic high-risk subjects.
ISSN:1472-9792
1873-281X
DOI:10.1016/j.tube.2010.01.003