Loading…

Tribology and surface mechanical properties of the oxide film formed by excimer laser surface treatment of AISI 304 stainless steel

The surface hardness and tribological properties of the surface oxide formed by excimer laser surface processing of AISI 304 stainless steel have been examined. It is found that laser processing initially anneals the stress-induced martensite on the surface of the stainless steel, resulting in a sof...

Full description

Saved in:
Bibliographic Details
Published in:Wear 1991-01, Vol.150 (1), p.259-265
Main Authors: Jervis, T.R., Hirvonen, J.-P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The surface hardness and tribological properties of the surface oxide formed by excimer laser surface processing of AISI 304 stainless steel have been examined. It is found that laser processing initially anneals the stress-induced martensite on the surface of the stainless steel, resulting in a softening of the surface. After more than 100 cycles of melting and resolidification, a surface oxide film develops which is harder than the austenite of the annealed substrate and comparable in hardness to the stress-induced martensite. The thickness of the oxide film is dependent on the number of laser pulses, so that arbitrarily thick films can be produced. The dry-sliding friction of the oxide film against a steel pin is substantially lower than that of the untreated polished surface with only the native oxide film and there is substantially less damage in both the wear track and the pin. The hard surface oxide is underlain by relatively soft austenite. The tribological behavior is thus not obviously the result of the surface mechanical properties of the film-substrate combination but is ascribed to changes in the chemical interaction between the pin and the disk.
ISSN:0043-1648
1873-2577
DOI:10.1016/0043-1648(91)90321-K