Loading…

A comparison of soil moisture retrieval models using SIR-C measurements over the little Washita River watershed

SIR-C L-band measurements over the Little Washita River watershed in Chickasha, Oklahama during 11–17 April 1994 have been analyzed for studying the change of soil moisture in the region. Two algorithms developed recently for estimation of moisture content in bare soil were applied to these measurem...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing of environment 1997-02, Vol.59 (2), p.308-320
Main Authors: Wang, J.R., Hsu, A., Shi, J.C., O'Neill, P.E., Engman, E.T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:SIR-C L-band measurements over the Little Washita River watershed in Chickasha, Oklahama during 11–17 April 1994 have been analyzed for studying the change of soil moisture in the region. Two algorithms developed recently for estimation of moisture content in bare soil were applied to these measurements and the results were compared with those sampled on the ground. There is a good agreement between the values of soil moisture estimated by either one of the algorithms and those measured from ground sampling for bare or sparsely vegetated fields. The standard error from this comparison is on the order of 0.05–0.06 cm 3/cm 3, which is comparable to that expected from a regression between backscattering coefficients and measured soil moisture. Both algorithms provide a poor estimation of soil moisture or fail to give solutions to areas covered with moderate or dense vegetation. Even for bare soils the number of pixels that bear no numerical solution from the application of either one of the two algorithms to the data is not negligible. Results from using one of these algorithms indicate that the fraction of these pixels becomes larger as the bare soils become drier. The other algorithm generally gives a larger fraction of these pixels when the fields are vegetation-covered. The implication and impact of these features are discussed in this article.
ISSN:0034-4257
1879-0704
DOI:10.1016/S0034-4257(96)00145-9