Loading…

Targeted Releasable Affinity Probe (TRAP) for In Vivo Photocrosslinking

A protein TRAP: The in vivo photocrosslinking of TRAP after its intracellular targeting to a binding sequence on the bait protein stabilizes protein interactions. Because the crosslinker is releasable, simple mass spectrometry can be used to identify the protein binding sites after purification.Prot...

Full description

Saved in:
Bibliographic Details
Published in:Chembiochem : a European journal of chemical biology 2009-06, Vol.10 (9), p.1507-1518
Main Authors: Yan, Ping, Wang, Ting, Newton, Gregory J, Knyushko, Tatyana V, Xiong, Yijia, Bigelow, Diana J, Squier, Thomas C, Mayer, M. Uljana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A protein TRAP: The in vivo photocrosslinking of TRAP after its intracellular targeting to a binding sequence on the bait protein stabilizes protein interactions. Because the crosslinker is releasable, simple mass spectrometry can be used to identify the protein binding sites after purification.Protein crosslinking, especially coupled to mass-spectrometric identification, is increasingly used to determine protein binding partners and protein-protein interfaces for isolated protein complexes. The modification of crosslinkers to permit their targeted use in living cells is of considerable importance for studying protein-interaction networks, which are commonly modulated through weak interactions that are formed transiently to permit rapid cellular response to environmental changes. We have therefore synthesized a targeted and releasable affinity probe (TRAP) consisting of a biarsenical fluorescein linked to benzophenone that binds to a tetracysteine sequence in a protein engineered for specific labeling. Here, the utility of TRAP for capturing protein binding partners upon photoactivation of the benzophenone moiety has been demonstrated in living bacteria and mammalian cells. In addition, ligand exchange of the arsenic-sulfur bonds between TRAP and the tetracysteine sequence to added dithiols results in fluorophore transfer to the crosslinked binding partner. In isolated protein complexes, this release from the original binding site permits the identification of the proximal binding interface through mass spectrometric fragmentation and computational sequence identification.
ISSN:1439-4227
1439-7633
DOI:10.1002/cbic.200900029