Loading…
Hydrometric network evaluation for Canadian watersheds
In recent years, climate change impacts on water resources sectors have been extensively documented. Anticipated changes range from more severe storms to more frequent floods and drought at regional scale. Pressure on water resources and hence on the environment will probably increase with the need...
Saved in:
Published in: | Journal of hydrology (Amsterdam) 2010-01, Vol.380 (3), p.420-437 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In recent years, climate change impacts on water resources sectors have been extensively documented. Anticipated changes range from more severe storms to more frequent floods and drought at regional scale. Pressure on water resources and hence on the environment will probably increase with the need of quality data for sustainable design of water resources projects. Therefore, for an optimal network design, hydrometric networks are to be reviewed periodically based on the information needs of the various end users and the perspective for future water resources development. This paper evaluates hydrometric networks to identify essential streamflow stations and critical areas (highly poor network density) within major watersheds across the different provinces of Canada using entropy theory. The method is applied to daily streamflow data and information coefficients such as marginal entropy, joint entropy and transinformation index are used for the identification of important stations as well as critical areas in the basin. The analysis results show that almost all Canadian main watersheds contain deficient hydrometric networks. The most deficient streamflow networks are identified in Alberta (North Saskatchewan, Oldman, and Red Deer basins), Northern Ontario (Hudson Bay basin), and the Northwest Territories. The information might prove to be helpful for decision makers to undertake cost-benefit analyses for hydrometric network updating in each region. |
---|---|
ISSN: | 0022-1694 1879-2707 |
DOI: | 10.1016/j.jhydrol.2009.11.015 |