Loading…

Robust friction compensation for submicrometer positioning and tracking for a ball-screw-driven slide system

Ball-screw-driven slide systems are largely used in industry for motion control applications. Their performance using standard proportional-integral-derivative (PID) control algorithm is unsatisfactory in submicrometer motion control because of nonlinear friction effects. In this article, controller...

Full description

Saved in:
Bibliographic Details
Published in:Precision engineering 2000-04, Vol.24 (2), p.160-173
Main Authors: Ro, Paul I., Shim, Wonbo, Jeong, Sanghwa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ball-screw-driven slide systems are largely used in industry for motion control applications. Their performance using standard proportional-integral-derivative (PID) control algorithm is unsatisfactory in submicrometer motion control because of nonlinear friction effects. In this article, controllers based on a bristle-type nonlinear contact model are developed and implemented for submicrometer motion. For submicrometer positioning, a proportional-derivative (PD) control scheme with a nonlinear friction estimate algorithm is developed, and its performance is compared with that of a PID controller. For tracking, a disturbance observer was added to reject external disturbances and to improve robustness. The experimental results indicate that the proposed controller has consistent performance in positioning with under 1.5% of steady-state error in the submicrometer range. For tracking performance, the proposed controller shows good and robust tracking with respect to parameter variation.
ISSN:0141-6359
1873-2372
DOI:10.1016/S0141-6359(00)00030-1