Loading…
Structured Nucleic Acid Probes for Electrochemical Devices
The use of nucleic acid with a specific sequence and a highly ordered secondary structure such as hairpins, quadruplexes and pseudoknots as biological recognition elements and switches in biosensors is rapidly increasing because of their improved features (e.g. selectivity) when compared with the tr...
Saved in:
Published in: | Electroanalysis (New York, N.Y.) N.Y.), 2009-10, Vol.21 (19), p.2077-2090 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The use of nucleic acid with a specific sequence and a highly ordered secondary structure such as hairpins, quadruplexes and pseudoknots as biological recognition elements and switches in biosensors is rapidly increasing because of their improved features (e.g. selectivity) when compared with the traditional linear probes. Owing to the novelty, a critical outlook of their characteristics and a compilation of the latest advances are lacking. This article describes the potential of those nucleic acids probes whose molecular recognition ability relies on a conformational change (e.g. folding/unfolding mechanism) in electrochemical sensing. It provides an overview of the toolbox of assays using these probes for genosensors and aptasensors, highlighting its performance characteristics and the prospects and challenges for biosensor design. |
---|---|
ISSN: | 1040-0397 1521-4109 |
DOI: | 10.1002/elan.200904653 |