Loading…
Chk1 prevents abnormal mitosis of S-phase HeLa cells containing DNA damage
To explore effects of DNA damage on cell-cycle progression in p53-deficient tumor cells, synchronized HeLa cells at G1, S and G2/M phases were treated with methyl methanesulfnate (MMS). The results showed that the MMS treatment resulted in the cell-cycle arrest or delay in all 3 phases, while the S-...
Saved in:
Published in: | Chinese science bulletin 2009-11, Vol.54 (22), p.4205-4213 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To explore effects of DNA damage on cell-cycle progression in p53-deficient tumor cells, synchronized HeLa cells at G1, S and G2/M phases were treated with methyl methanesulfnate (MMS). The results showed that the MMS treatment resulted in the cell-cycle arrest or delay in all 3 phases, while the S-phase cells were the most sensitive to MMS. Further studies demonstrated that ATM-Chk2 and p38 MAPK signaling pathways were activated in all 3 phases when the cells were treated with MMS; whereas Chk1 was activated only in S phase under the drug treatment, indicating that Chk1 specifically participated in S-phase checkpoints. To analyze the role of Chk1 in S-phase checkpoints, we administered a specific Chk1 inhibitor, UCN-01, to the S-phase cells. The results showed that the S-phase cells treated with MMS+UCN-01 could enter aberrant mitosis without finishing DNA replication, indicating that Chk1 mainly functions in the DNA damage checkpoint rather than in the replication checkpoint. In addition, MMS treatment alone inhibited the accumulation of cyclin B1, a key component of M-phase CDK-cyclin complex, in the S-phase cells, whereas the inhibition of Chk1 activation resulted in the accumulation of cyclin B1 in the MMS-treated S-phase cells. This observation further supports the view that DNA-damaged S-phase cells enter abnormal mitosis when Chk1 activation is inhibited. Our results demonstrate that Chk1 is a specific kinase that plays an important role in the MMS-induced S-phase DNA damage checkpoint. As p53 is not involved in this process, Chk1 may be a potential target for p53-deficient tumor therapy. |
---|---|
ISSN: | 1001-6538 1861-9541 |
DOI: | 10.1007/s11434-009-0633-1 |