Loading…

Laminar flow efficiency of stratified chilled-water storage tanks

This paper presents results for the efficiency of a stratified chilled-water storage tank with one inlet and one outlet. Numerical solutions for the two-dimensional, unsteady, laminar flow during stably stratified tank filling are compared with a one-dimensional model involving only conductive heat...

Full description

Saved in:
Bibliographic Details
Published in:The International journal of heat and fluid flow 1998-02, Vol.19 (1), p.69-78
Main Authors: Homan, K.O., Soo, S.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents results for the efficiency of a stratified chilled-water storage tank with one inlet and one outlet. Numerical solutions for the two-dimensional, unsteady, laminar flow during stably stratified tank filling are compared with a one-dimensional model involving only conductive heat transfer across the thermocline separating the entering cold water and the exiting warm water. This one-dimensional model represents the minimum level of thermal mixing. The difference between the one-dimensional and two-dimensional models are revealed by a horizontal average of the governing equation for the two-dimensional model. Comparison reveals that for inlet Reynolds numbers of approximately 100, the efficiency of the actual, two-dimensional filling is less than 10% below the optimal efficiency of the model. Examination of an effective diffusivity, which can be associated with the mixing ignored in the one-dimensional model, reveals that the early and late stages of the tank-filling process are responsible for most of the deviation between the actual and ideal performances. For the present Reynolds number range, the two-dimensional predictions for effective diffusivity agree well with values derived from published experimental data.
ISSN:0142-727X
1879-2278
DOI:10.1016/S0142-727X(97)10003-0