Loading…
Dual Cross-Linking Systems of Functionally Photo-Cross-Linkable and Thermoresponsive Polyphosphazene Hydrogels for Biomedical Applications
Photo-cross-linkable, functionalized, and thermosensitive polyphosphazenes were synthesized to develop a dual cross-linking system with properties of mechanically suitable strength and controllable biodegradation for injectable biomedical applications. The aqueous solutions of the polymers exhibited...
Saved in:
Published in: | Biomacromolecules 2010-07, Vol.11 (7), p.1741-1753 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Photo-cross-linkable, functionalized, and thermosensitive polyphosphazenes were synthesized to develop a dual cross-linking system with properties of mechanically suitable strength and controllable biodegradation for injectable biomedical applications. The aqueous solutions of the polymers exhibited sol−gel transition behaviors against temperature. The incorporated methacrylate groups were photo-cross-linked upon UV light under mild conditions, which resulted in the formation of compact three-dimensional networks. The thermoresponsive hydrophobic interactions at body temperature facilitated the rapid dual cross-linking accomplishment of the photo-cross-linking even under mild conditions. The characteristics of the polymers such as pore size and density showed that the inner three-dimensional networks depended on the degree of cross-linking of methacrylate units. Mechanical properties of the gel were also improved several folds after developing the photo-cross-linking in the network from the in vivo degradation studies. The results demonstrate that the photo-cross-linkable and thermoresponsive polyphosphazenes have great potential as injectable, biodegradable, and controllable carriers for various biomedical applications by tuning the mechanical gel property and the degradation rate. |
---|---|
ISSN: | 1525-7797 1526-4602 |
DOI: | 10.1021/bm100197y |