Loading…

Preferred QT Correction Formula for the Assessment of Drug-Induced QT Interval Prolongation

Drug‐Induced QTc Interval Assessment. Introduction: There is debate on the optimal QT correction method to determine the degree of the drug‐induced QT interval prolongation in relation to heart rate (ΔQTc). Methods: Forty‐one patients (71 ± 10 years) without significant heart disease who had baselin...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cardiovascular electrophysiology 2010-08, Vol.21 (8), p.905-913
Main Authors: CHILADAKIS, JOHN, KALOGEROPOULOS, ANDREAS, ARVANITIS, PANAGIOTIS, KOUTSOGIANNIS, NIKOLAOS, ZAGLI, FANI, ALEXOPOULOS, DIMITRIOS
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Drug‐Induced QTc Interval Assessment. Introduction: There is debate on the optimal QT correction method to determine the degree of the drug‐induced QT interval prolongation in relation to heart rate (ΔQTc). Methods: Forty‐one patients (71 ± 10 years) without significant heart disease who had baseline normal QT interval with narrow QRS complexes and had been implanted with dual‐chamber pacemakers were subsequently started on antiarrhythmic drug therapy. The QTc formulas of Bazett, Fridericia, Framingham, Hodges, and Nomogram were applied to assess the effect of heart rate (baseline, atrial pacing at 60 beats/min, 80 beats/min, and 100 beats/min) on the derived ΔQTc (QTc before and during antiarrhythmic therapy). Results: Drug treatment reduced the heart rate (P < 0.001) and increased the QT interval (P < 0.001). The heart rate increase shortened the QT interval (P < 0.001) and prolonged the QTc interval (P < 0.001) by the use of all correction formulas before and during antiarrhythmic therapy. All formulas gave at 60 beats/min similar ΔQTc of 43 ± 28 ms. At heart rates slower than 60 beats/min, the Bazett and Framingham methods provided the most underestimated ΔQTc values (14 ± 32 ms and 18 ± 34 ms, respectively). At heart rates faster than 60 beats/min, the Bazett and Fridericia methods yielded the most overestimated ΔQTc values, whereas the other 3 formulas gave similar ΔQTc increases of 32 ± 28 ms. Conclusions: Bazett's formula should be avoided to assess ΔQTc at heart rates distant from 60 beats/min. The Hodges formula followed by the Nomogram method seem most appropriate in assessing ΔQTc. (J Cardiovasc Electrophysiol, Vol. 21, pp. 905‐913, August 2010)
ISSN:1045-3873
1540-8167
DOI:10.1111/j.1540-8167.2010.01738.x