Loading…
A purified C-terminally truncated human adenosine A(2A) receptor construct is functionally stable and degradation resistant
Recent high resolution structures of modified G-protein coupled receptors (GPCRs) have provided major insight into the mechanisms of receptor-ligand binding. However understanding of the complete mechanism of GPCR function remains limited. This study characterised C-terminally truncated versions of...
Saved in:
Published in: | Protein expression and purification 2010-11, Vol.74 (1), p.80-87 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent high resolution structures of modified G-protein coupled receptors (GPCRs) have provided major insight into the mechanisms of receptor-ligand binding. However understanding of the complete mechanism of GPCR function remains limited. This study characterised C-terminally truncated versions of the human adenosine A(2A) receptor (A(2A)R) with a view to producing protein suitable for structural studies. The constructs terminated at residue A316, removing the intracellular C-terminal tail, or V334, producing a C-terminal tail equivalent in length to that of rhodopsin. Higher levels of functional receptor before and after solubilisation were obtained for both C-terminally truncated constructs compared to the wild-type receptor (WT) as assessed by radioligand binding analysis using [(3)H]ZM241385. The construct which yielded the highest level of functional receptor, V334 A(2A)R, was purified in DDM to high homogeneity with a final yield of 2 mg/L. Binding analysis revealed that the purified receptor had a specific activity of 20.2+/-1.2 nmol/mg, close to the theoretical maximum. Pure V334 A(2A)R was resistant to degradation over 15 days when stored at 4 degrees C or 20 degrees C and showed remarkable functional stability when stored at 4 degrees C, retaining 84% of initial functionality after 30 days. This construct is an excellent candidate for structural studies. |
---|---|
ISSN: | 1096-0279 |
DOI: | 10.1016/j.pep.2010.04.018 |