Loading…

The stability of high internal phase emulsions at low surfactant concentration studied by small angle neutron scattering

High internal phase emulsions become unstable when the micelle concentration in the continuous phase reaches a critical lower concentration perhaps no longer suppressing capillary wave instability. The changes in structure of high internal phase emulsions at low concentrations and at elevated temper...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2010-09, Vol.349 (2), p.544-553
Main Authors: Reynolds, Philip A., McGillivray, Duncan J., Mata, Jitendra P., Yaron, Peter N., White, John W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High internal phase emulsions become unstable when the micelle concentration in the continuous phase reaches a critical lower concentration perhaps no longer suppressing capillary wave instability. The changes in structure of high internal phase emulsions at low concentrations and at elevated temperature are reported for comparison with the same emulsions under conditions well away from instability. Small angle neutron scattering measurements on aqueous ammonium nitrate droplets dispersed in hexadecane and stabilized by very small quantities of a polyisobutylene-based surfactant (PIBSA) as well as related inverse micellar solutions in hexadecane, have been made as a function of temperature and surfactant concentration. Experimental conditions here favour larger and more deformable droplets than in previous studies. Besides the expected micelles and adsorbed surfactant, planar bilayers of micron lateral extent between touching droplets cover 20% of the droplet surface. Another difference from previous experiments is that the oil phase in the emulsions, and corresponding inverse micellar solutions are different in micellar radii and composition. The differences, and changes with surfactant concentration and temperature, are attributed to fractionation of the polydisperse PIBSA in the emulsions, but not the inverse micellar solutions. At low PIBSA concentration and high temperature the SANS shows emulsion decomposing into separate oil and aqueous phases. This occurs when the micelle concentration reaches a very small but measurable value. The inverse micelles may suppress by steric action long wavelength unstable capillary waves in the bilayers. Depletion repulsion forces here have a minor role in the emulsion stabilization.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2010.05.082