Loading…

Adaptive finite element methods for mixed control-state constrained optimal control problems for elliptic boundary value problems

Mixed control-state constraints are used as a relaxation of originally state constrained optimal control problems for partial differential equations to avoid the intrinsic difficulties arising from measure-valued multipliers in the case of pure state constraints. In particular, numerical solution te...

Full description

Saved in:
Bibliographic Details
Published in:Computational optimization and applications 2010-07, Vol.46 (3), p.511-533
Main Authors: Hoppe, R. H. W., Kieweg, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mixed control-state constraints are used as a relaxation of originally state constrained optimal control problems for partial differential equations to avoid the intrinsic difficulties arising from measure-valued multipliers in the case of pure state constraints. In particular, numerical solution techniques known from the pure control constrained case such as active set strategies and interior-point methods can be used in an appropriately modified way. However, the residual-type a posteriori error estimators developed for the pure control constrained case can not be applied directly. It is the essence of this paper to show that instead one has to resort to that type of estimators known from the pure state constrained case. Up to data oscillations and consistency error terms, they provide efficient and reliable estimates for the discretization errors in the state, a regularized adjoint state, and the control. A documentation of numerical results is given to illustrate the performance of the estimators.
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-008-9195-4