Loading…

Estimation of the far-field directivity of broadband aeroengine fan noise using an in-duct axial microphone array

This paper presents a measurement technique for estimating the far-field directivity of the sound radiated from a duct using measurements of acoustic pressure made inside the duct. The technique is restricted to broadband, multi-mode sound fields whose directivity patterns are axi-symmetric, and who...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sound and vibration 2010-09, Vol.329 (19), p.3940-3957
Main Authors: Lowis, C.R., Joseph, P.F., Kempton, A.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a measurement technique for estimating the far-field directivity of the sound radiated from a duct using measurements of acoustic pressure made inside the duct. The technique is restricted to broadband, multi-mode sound fields whose directivity patterns are axi-symmetric, and whose modes are mutually uncorrelated. The technique uses a transfer function to relate the output from an in-duct axial beamformer to measurements of the far-field polar directivity. A transfer function for a hollow cylindrical duct with no flow is derived, and investigated in detail. Transfer functions for practical cases concerning aeroengine exhausts are also presented. The transfer function is shown to be insensitive to the mode-amplitude distribution inside the duct, and hence can be used to predict the directivity in practice where the noise source distribution is unknown. The technique is then validated using a no-flow facility, and is shown to be able to predict variations in the far-field directivity pattern and also estimate the far-field sound pressure levels to within 2 dB. It is suggested that the proposed technique will be especially useful for fan rig experiments, where direct measurement of directivity, for example by use of an anechoic chamber, is impossible.
ISSN:0022-460X
1095-8568
DOI:10.1016/j.jsv.2010.03.021