Loading…

Effect of indium content and rapid solidification on microhardness and micro-creep of Sn-Zn eutectic lead free solder alloy

The Sn‐Zn alloys have been considered as lead‐free solders. In this paper, the effect of 0.0, 0.5, 1.0, 1.5 and 2.0 wt.% Indium as ternary additions on melting temperature, structure, microhardness and micro‐creep of the Sn‐9Zn lead‐free solders were investigated. It is shown that the alloying addit...

Full description

Saved in:
Bibliographic Details
Published in:Crystal research and technology (1979) 2010-04, Vol.45 (4), p.427-432
Main Author: Shalaby, R. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Sn‐Zn alloys have been considered as lead‐free solders. In this paper, the effect of 0.0, 0.5, 1.0, 1.5 and 2.0 wt.% Indium as ternary additions on melting temperature, structure, microhardness and micro‐creep of the Sn‐9Zn lead‐free solders were investigated. It is shown that the alloying additions of Indium to the Sn‐Zn binary system result in a suppression of the melting point to 187.9 °C. From x‐ray diffraction analysis, a new intermetallic compound phase, designated β‐In3Sn is detected. The formation of an intermetallic compound phase causes a pronounced increase in the electrical resistivity and mechanical strength. Also, an interesting connection between dynamic Young's modulus and the axial ratio (c/a) of the unit cell of the β‐Sn was found in which Young's modulus increases with increasing the axial ratio (c/a). The ternary Sn‐9Zn‐xIn exhibits creep resistance superior to Sn‐9Zn binary alloy. The better creep resistance of the ternary alloy is attributed to solid solution effect and precipitation of In3Sn in the Sn matrix. The addition of small amounts of In is found to refine the effective grain size and consequently, improves hardness. The 89%Sn‐9%Zn‐2%In alloy is a lead‐free solder designed for possible drop‐in replacement of Pb‐Sn solders. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
ISSN:0232-1300
1521-4079
DOI:10.1002/crat.201000022