Loading…
Novel molecular tumour classification using MALDI-mass spectrometry imaging of tissue micro-array
The development of tissue micro-array (TMA) technologies provides insights into high-throughput analysis of proteomics patterns from a large number of archived tumour samples. In the work reported here, matrix-assisted laser desorption/ionisation-ion mobility separation-mass spectrometry (MALDI-IMS-...
Saved in:
Published in: | Analytical and bioanalytical chemistry 2010-05, Vol.397 (2), p.587-601 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The development of tissue micro-array (TMA) technologies provides insights into high-throughput analysis of proteomics patterns from a large number of archived tumour samples. In the work reported here, matrix-assisted laser desorption/ionisation-ion mobility separation-mass spectrometry (MALDI-IMS-MS) profiling and imaging methodology has been used to visualise the distribution of several peptides and identify them directly from TMA sections after on-tissue tryptic digestion. A novel approach that combines MALDI-IMS-MSI and principal component analysis-discriminant analysis (PCA-DA) is described, which has the aim of generating tumour classification models based on protein profile patterns. The molecular classification models obtained by PCA-DA have been validated by applying the same statistical analysis to other tissue cores and patient samples. The ability to correlate proteomic information obtained from samples with known and/or unknown clinical outcome by statistical analysis is of great importance, since it may lead to a better understanding of tumour progression and aggressiveness and hence improve diagnosis, prognosis as well as therapeutic treatments. The selectivity, robustness and current limitations of the methodology are discussed. |
---|---|
ISSN: | 1618-2642 1618-2650 |
DOI: | 10.1007/s00216-010-3554-6 |