Loading…

Neuromorphically Inspired Appraisal-Based Decision Making in a Cognitive Robot

Real-time search techniques have been used extensively in the areas of task planning and decision making. In order to be effective, however, these techniques require task-specific domain knowledge in the form of heuristic or utility functions. These functions can either be embedded by the programmer...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on autonomous mental development 2010-03, Vol.2 (1), p.17-39
Main Authors: Gordon, S.M., Kawamura, K., Wilkes, D.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Real-time search techniques have been used extensively in the areas of task planning and decision making. In order to be effective, however, these techniques require task-specific domain knowledge in the form of heuristic or utility functions. These functions can either be embedded by the programmer, or learned by the system over time. Unfortunately, many of the reinforcement learning techniques that might be used to acquire this knowledge generally demand static feature vector representations defined a priori . Current neurobiological research offers key insights into how the cognitive processing of experience may be used to alleviate dependence on preprogrammed heuristic functions, as well as on static feature representations. Research also suggests that internal appraisals are influenced by such processing and that these appraisals integrate with the cognitive decision-making process, providing a range of useful and adaptive control signals that focus, inform, and mediate deliberation. This paper describes a neuromorphically inspired approach for cognitively processing experience in order to: 1) abstract state information; 2) learn utility functions over this state abstraction; and 3) learn to tradeoff between performance and deliberation time.
ISSN:1943-0604
2379-8920
1943-0612
2379-8939
DOI:10.1109/TAMD.2010.2043530