Loading…

Application of a dislocation based model for Interstitial Free (IF) steels to typical stamping simulations

With a view to environmental, economic and safety concerns, car manufacturers need to design lighter and safer vehicles in ever shorter development times. In recent years, High Strength Steels (HSS) like Interstitial Free (IF) steels which have higher ratios of yield strength to elastic modulus, are...

Full description

Saved in:
Bibliographic Details
Main Authors: Carvalho Resende, T, Balan, T, Abed-Meraim, F, Bouvier, S, Sablin, S S
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With a view to environmental, economic and safety concerns, car manufacturers need to design lighter and safer vehicles in ever shorter development times. In recent years, High Strength Steels (HSS) like Interstitial Free (IF) steels which have higher ratios of yield strength to elastic modulus, are increasingly used for sheet metal parts in automotive industry to meet the demands. Moreover, the application of sheet metal forming simulations has proven to be beneficial to reduce tool costs in the design stage and to optimize current processes. The Finite Element Method (FEM) is quite successful to simulate metal forming processes but accuracy largely depends on the quality of the material properties provided as input to the material model. Common phenomenological models roughly consist in the fitting of functions on experimental results and do not provide any predictive character for different metals from the same grade. Therefore, the use of accurate plasticity models based on physics would increase predictive capability, reduce parameter identification cost and allow for robust and time-effective finite element simulations. For this purpose, a 3D physically based model at large strain with dislocation density evolution approach was presented in IDDRG2009 by the authors [1]. This model allows the description of work-hardening's behavior for different loading paths (i.e. uniaxial tensile, simple shear and Bauschinger tests) taking into account several data from microstructure (i.e. grain size, texture, etc.). The originality of this model consists in the introduction of microstructure data in a classical phenomenological model in order to achieve work-hardening's predictive character for different metals from the same grade. Indeed, thanks to a microstructure parameter set for an Interstitial Free steel, it is possible to describe work-hardening behavior for different loading paths of other IF steels by only changing the mean grain size and the chemical composition. During sheet metal forming processes local material points may experience multi-axial and multi-path loadings. Before simulating actual industrial parts, automotive manufacturers use validation tools - e.g. the Cross-Die stamping test Such typical stamping tests enable the evaluation of a complex distribution of strains. The work described is an implementation [2] of a 3D dislocation based model in ABAQUS/Explicit and its validation on a Finite Element (FE) Cross-Die model. In order to assess t
ISSN:0094-243X
DOI:10.1063/1.3457539