Loading…
Optimized U -type designs on flexible regions
The concept of a flexible region describes an infinite variety of symmetrical shapes to enclose a particular region of interest within a space. In experimental design, the properties of a function on the region of interest are analyzed based on a set of design points. The choice of design points can...
Saved in:
Published in: | Computational statistics & data analysis 2010-06, Vol.54 (6), p.1505-1515 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The concept of a flexible region describes an infinite variety of symmetrical shapes to enclose a particular region of interest within a space. In experimental design, the properties of a function on the region of interest are analyzed based on a set of design points. The choice of design points can be made based on some discrepancy criterion. The generation of design points on a flexible region is investigated. A recently proposed discrepancy measure, the central composite discrepancy, is used for this purpose. The optimization heuristic Threshold Accepting is applied to generate low-discrepancy
U
-type designs. The proposed algorithm is capable of constructing optimal
U
-type designs under various flexible experimental regions in two or more dimensions. The illustrative results for the two-dimensional case indicate that by using an optimization heuristic in combination with an appropriate discrepancy measure produces high-quality experimental designs on flexible regions. |
---|---|
ISSN: | 0167-9473 1872-7352 |
DOI: | 10.1016/j.csda.2010.01.032 |