Loading…

Effect of deviatoric nonassociativity on the failure prediction for elastic–plastic materials

This paper presents a theoretical study of the effect of nonassociativity of the plastic flow rule on the critical plastic modulus for discontinuous bifurcation in an elastic–plastic material. Nonassociativity in both the spherical and the deviatoric spaces are considered, with an emphasis on the ef...

Full description

Saved in:
Bibliographic Details
Published in:International journal of solids and structures 2010-06, Vol.47 (11), p.1563-1571
Main Authors: Zuo, Q.H., Schreyer, H.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a theoretical study of the effect of nonassociativity of the plastic flow rule on the critical plastic modulus for discontinuous bifurcation in an elastic–plastic material. Nonassociativity in both the spherical and the deviatoric spaces are considered, with an emphasis on the effect of nonassociativity in the deviatoric space. A particular form of nonassociativity in the deviatoric space is introduced, where the projections of the plastic flow direction and the normal to the yield surface are assumed to have the same length but the projection of plastic flow direction is allowed to lag that of the normal by an angle. It is shown that even for the simple yield surface of von Mises, nonassociativity in the deviatoric space can lead to a bifurcation for a load parameter significantly lower than the value predicted with an associated flow rule.
ISSN:0020-7683
1879-2146
DOI:10.1016/j.ijsolstr.2010.02.015