Loading…
Commensal microflora and interferon-γ promote steady-state interleukin-7 production in vivo
IL-7 is a major regulator of lymphocyte homeostasis; however, little is known about the mechanisms that regulate IL-7 production. To study Il7 gene regulation in vivo, we generated a novel IL-7-reporter mouse, which allows the non-invasive quantification of Il7 gene activity in live mice and, additi...
Saved in:
Published in: | European journal of immunology 2010-09, Vol.40 (9), p.2391-2400 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | IL-7 is a major regulator of lymphocyte homeostasis; however, little is known about the mechanisms that regulate IL-7 production. To study Il7 gene regulation in vivo, we generated a novel IL-7-reporter mouse, which allows the non-invasive quantification of Il7 gene activity in live mice and, additionally, the simultaneous activation/inactivation of target genes in IL-7-producing cells. With these IL-7-reporter mice, we identify thymus, skin and intestine as major sources of IL-7 in vivo. Importantly, we show that IFN-γ and the commensal microflora promote steady-state IL-7 production in the intestine. Furthermore, we demonstrate that the blockade of IFN-γ signaling in intestinal epithelial cells strongly reduces their IFN-γ-driven IL-7 production. In summary, our data suggest a feedback loop in which commensal bacteria drive IFN-γ production by lymphocytes, which in turn promotes epithelial cell IL-7 production and the survival of IL-7-dependent lymphocytes. |
---|---|
ISSN: | 0014-2980 1521-4141 |
DOI: | 10.1002/eji.201040441 |